@ SPEED

CASE STUDY

Cimpress reduces load testing < > Clmpress'”
time by 80% with Speedscale

Cimpress is a global eCommerce company that produces custom marketing materials for
small businesses. Millions of customers worldwide use their design and printing services to
create business cards, sighage, promotional items, stationary, gifts, and more.

4 ™
Premium Business Cards P - a

Shape - 24 per page v

(O standard (35" x 2 (V) <o

Your Company Name Company Name

Logo 7
Here CompamMosge
X
Full Name

Upload your own design

(O square (25" x 25

Finishes -

@ Standard (3.5"x 2") Standard (3.5" x 2") Standard (3.5" x 2")
No Finish

100 from $25.00 100 from $25.00 100 from $25.00
O embossed Gloss
O Foil Accent @. P (). ® O 5y (O o0 @ +3v
Corners = (V] <
first name MIIFULL NAME
@ standard last name
O Rounded

Challenge

As Principal Software Engineer, Jeff Kwan leads a team of APl engineers that manages the software and product data
behind Cimpress’ expansive catalog. “The fidelity of this product data is very important because if it's wrong, then a lot of
downstream activities are impacted—product design, fulfillment, prices. There’s a lot that could go wrong if the software
isn't working the right way,” Jeff says.

Jeff’s team had inherited legacy software from a different team and was looking to migrate off of it. He realized they needed a
solution to test that the new software worked the same way as the old one. To describe the challenge he was facing, Jeff explains:

% Jeff Kwan)
I~ Principal Software Engineer (’) ClmpreSS

2023 Speedscale, Inc. All Rights Reserved

Evaluating Solutions

Before the team found Speedscale, they had tried a couple open source tools, Diffy and GoReplay. While the tools initially
met their needs, they soon felt that certain key elements were missing, like clear documentation, a thoughtful developer
experience, and customer support.

For about two years, Jeff and his team created workarounds with the open source tooling, but were still struggling with the
lack of a more comprehensive solution. His confidence level in executing tasks, like changing framework versions, was not
as high as he would have liked it to be.

Jeff came across Speedscale through a Google search while looking for automated API testing tools, and recalls it was the
pure focus on APIs and Kubernetes, as well as good documentation that initially attracted him to the offering. Upon further
investigation, he grew more impressed by the Speedscale team’s technical expertise and the product’s capabilities. Right
off the bat, Jeff understood one of the key values of Speedscale’s offering: speed of implementation.

“When | would try recording traffic on my own, it was always a pain. | thought to myself, if Speedscale can record traffic and
then replay it, that means, at a minimum, setup will be easier.”

Using Speedscale

Jeff recalls a very smooth implementation, guided mostly by documentation, a few calls with the Speedscale team, and
engagement with other developers in Speedscale’s Slack community.

Today, Jeff’'s team uses Speedscale for 3 main use cases: Regression Testing, Load Testing, and Observability.

Regression Testing

Despite having talented, senior engineers on (" resriors 2) (e . <la)
the team, catching regression bugs was still : :
difficult without a solution like Speedscale. Data
setup and scripting was time-consuming, and
the overall testing process was inconsistent,

involving light spot-checking instead of a more
comprehensive approach to testing. Now, they
canrecord and apply real customer traffic to
validate that things like platform or node
version updates aren’t changing the outputs.

2023 Speedscale, Inc. All Rights Reserved. speedscale.com

https://docs.speedscale.com/
https://docs.speedscale.com/concepts/capture/
https://docs.speedscale.com/concepts/replay/
https://slack.speedscale.com/
https://github.com/opendiffy/diffy
https://github.com/buger/goreplay

Load Testing

Prior to Speedscale, Jeff and his team had attempted to test application performance by scripting tests in K6. But this had 2
major drawbacks: 1) it was a manual process, and 2) scripting tests with the wrong product data could stress parts of the
product catalog that weren't realistic. Then, Jeff discovered Speedscale’s K6 converter and was able to record real
customer traffic and run it through K6, taking a 3-4 day testing process for one service down to 40 minutes. Today, Jeff uses
Speedscale’s own pod-based load generators to bypass K6 altogether, saving even more time.

But what he really liked about Speedscale was that it gave him more practical data.

KUBERNETES LOAD
TESTING COMPARISON:

SPEEDSCALE VS K6

Read More

9

As Jeff and his team prepared for Black Friday, they reduced a typical 4-week testing process down to 3-4 days with

Speedscale.
Performance Y Success rate 97.94% Responder rate 100.00%
Latency) 34.02 ms Throughput) 13.78 TPS
600 40
Memory) 353.61 MB CPU @ 154.19 millicpu
600 300
40 20!
00:01:22 i
345 M8 argo-deploy-app
200 10
\.'f:;,\ 00 00:00:40 00:01:20 00:02:00 LJ),):00 00:00:40 00:01:20 0:02:00
N /

API Observability

Since implementing Speedscale, Jeff and his team have realized additional benefits beyond their initial expectations.

Speedscale’s capabilities around APl observability have helped them pinpoint and fix specific issues that they wouldn’t
have discovered otherwise.

2023 Speedscale, Inc. All Rights Reserved.

https://speedscale.com/blog/kubernetes-load-testing-comparison-speedscale-vs-k6/
https://docs.speedscale.com/reference/integrations/grafana/

' I

T
Service Config Tag Duration Success \ Status

L I

constraints-ser... performance_100... 16sec 100.00% v Passed . .
constrantsser. standard smin a0 100.00% B ‘In one instance, | noticed that there was a small
model-composer-.. _ standard asee ey (P amount of traffic that had been causing some failures
constraints-ser... performance_10r... 1isec 100.00% Passed . . o .
odetcomposere. standrs oo B in our system. It was only happening 3% of the time,
constraints-ser.. _standard e 100.00% B but it was still somehow critical to how it all worked.
amin teee — So, lwent in and fixed it, but | wouldn't have found that
model-composer-... standard Tsec % + Passed . o ,
model-composer-. _ performance_100.. Smin 25sec T issue had I not seen it in Speedscale.” He was also

o - perforeplicas.. fomin t6sec — (V/Pased able to identify when calls weren't optimized properly,
prod derab... perf_20replicas... 10min 12sec 99.92% , © Missed Goals . . X
. o pert s0repticas.. i 0see oo R making direct calls to resources as opposed to using
pasta-productio.. perf_20replicas... 10min 10sec 99.90% . passed caches. Optimizations such as those could all add up
’ - e SR, s during holiday load
model-composer-... performance_300... 11min 20sec 99.87% , @ Missed Goals ’
prod derab... perf_20replicas... 3min 13sec 99.81% , v Passed

. %

Results & Future Outlook

One year later, Jeff and his team report that they are incredibly pleased with their experience and the results they’ve
achieved with Speedscale.

Speedscale’s offering is really, really good. The products, especially Traffic Viewer and Diff
Viewer, and the overall developer-centric experience are all very polished.

He appreciates how open the Speedscale team is to receiving product feedback, and is excited to have his team trial some
new features, like local desktop testing and auto-updating of web tokens.

4 ™

Inbound Throughput Outbound Throughput
100 100
h M - / MA A
0 0
16:58 16:59 17:00 17:01 16:58 16:59 17:00 17:01
L A port: 5000 requests: 1,721 (96%) f
o port: 5000 requests: 62 (3%) _ ranch-production-speedscale Wip-XXX.XXX.XXX.XXX... port 5432 requests: 465 +
- port: 5000 requests: 14 (1%)
Date * Direction & Tech & Operation & Host & Endpoint $ Duration $ Status &
2023-01-25 17:01:23 IN AWS OPTIONS ranch /api/V1/Products/PRD-IYXTIT3V/v... 1ms 204 >
2023-01-25 17:01:23 IN AWS GET ranch /api/vi/products/PRD-EXSA3H3Q... 35ms 200 v
2023-01-25 17:01:23 IN AWS GET ranch /api/vi/Products/PRD-ZSFQFTW... 98ms 200 v
2023-01-25 17:01:23 IN JSON GET ranch /api/vi/products/PRD-L7CDTOM... 144ms 200 v
2023-01-25 17:01:23 IN AWS GET ranch /api/vi/Products/PRD-RWLCHPA... 29ms 200 v
2023-01-25 17:01:23 IN AWS GET ranch /api/vi/products/PRD-TPQQHISS... 15ms 200 v
2023-01-25 17:01:23 IN AWS GET ranch /api/vi/Pcs/api/v3/lowest-price/... 16ms 200 v
2023-01-25 17:01:23 IN AWS GET ranch /api/vi/products/PRD-CYQWCTQ... 70ms 200 L4
2023-01-25 17:01:23 IN AWS GET ranch /api/vi/Products/PRD-TPQQHISS... 32ms 200 v
2023-01-25 17:01:22 N AWS GET ranch /api/vi/Products/PRD-TPQQHISS... 148ms 200 v

2023 Speedscale, Inc. All Rights Reserved. speedscale.com

https://docs.speedscale.com/guides/creating-a-snapshot/#observe-traffic
https://speedscale.com/local-kubernetes-clusters-in-2021/

