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Cimpress reduces load testing < > Clmpress'”
time by 80% with Speedscale

Cimpress is a global eCommerce company that produces custom marketing materials for
small businesses. Millions of customers worldwide use their design and printing services to
create business cards, sighage, promotional items, stationary, gifts, and more.
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Challenge

As Principal Software Engineer, Jeff Kwan leads a team of APl engineers that manages the software and product data
behind Cimpress’ expansive catalog. “The fidelity of this product data is very important because if it's wrong, then a lot of
downstream activities are impacted—product design, fulfillment, prices. There’s a lot that could go wrong if the software
isn't working the right way,” Jeff says.

Jeff’s team had inherited legacy software from a different team and was looking to migrate off of it. He realized they needed a
solution to test that the new software worked the same way as the old one. To describe the challenge he was facing, Jeff explains:
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Evaluating Solutions

Before the team found Speedscale, they had tried a couple open source tools, Diffy and GoReplay. While the tools initially
met their needs, they soon felt that certain key elements were missing, like clear documentation, a thoughtful developer
experience, and customer support.

For about two years, Jeff and his team created workarounds with the open source tooling, but were still struggling with the
lack of a more comprehensive solution. His confidence level in executing tasks, like changing framework versions, was not
as high as he would have liked it to be.

Jeff came across Speedscale through a Google search while looking for automated API testing tools, and recalls it was the
pure focus on APIs and Kubernetes, as well as good documentation that initially attracted him to the offering. Upon further
investigation, he grew more impressed by the Speedscale team’s technical expertise and the product’s capabilities. Right
off the bat, Jeff understood one of the key values of Speedscale’s offering: speed of implementation.

“When | would try recording traffic on my own, it was always a pain. | thought to myself, if Speedscale can record traffic and
then replay it, that means, at a minimum, setup will be easier.”

Using Speedscale

Jeff recalls a very smooth implementation, guided mostly by documentation, a few calls with the Speedscale team, and
engagement with other developers in Speedscale’s Slack community.

Today, Jeff’'s team uses Speedscale for 3 main use cases: Regression Testing, Load Testing, and Observability.

Regression Testing

Despite having talented, senior engineers on (" resriors 2) (e . <la )
the team, catching regression bugs was still : :
difficult without a solution like Speedscale. Data
setup and scripting was time-consuming, and
the overall testing process was inconsistent,

involving light spot-checking instead of a more
comprehensive approach to testing. Now, they
canrecord and apply real customer traffic to
validate that things like platform or node
version updates aren’t changing the outputs.
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https://docs.speedscale.com/
https://docs.speedscale.com/concepts/capture/
https://docs.speedscale.com/concepts/replay/
https://slack.speedscale.com/
https://github.com/opendiffy/diffy
https://github.com/buger/goreplay

Load Testing

Prior to Speedscale, Jeff and his team had attempted to test application performance by scripting tests in K6. But this had 2
major drawbacks: 1) it was a manual process, and 2) scripting tests with the wrong product data could stress parts of the
product catalog that weren't realistic. Then, Jeff discovered Speedscale’s K6 converter and was able to record real
customer traffic and run it through K6, taking a 3-4 day testing process for one service down to 40 minutes. Today, Jeff uses
Speedscale’s own pod-based load generators to bypass K6 altogether, saving even more time.

But what he really liked about Speedscale was that it gave him more practical data.
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As Jeff and his team prepared for Black Friday, they reduced a typical 4-week testing process down to 3-4 days with

Speedscale.
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API Observability

Since implementing Speedscale, Jeff and his team have realized additional benefits beyond their initial expectations.

Speedscale’s capabilities around APl observability have helped them pinpoint and fix specific issues that they wouldn’t
have discovered otherwise.
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https://speedscale.com/blog/kubernetes-load-testing-comparison-speedscale-vs-k6/
https://docs.speedscale.com/reference/integrations/grafana/
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Results & Future Outlook

One year later, Jeff and his team report that they are incredibly pleased with their experience and the results they’ve
achieved with Speedscale.

Speedscale’s offering is really, really good. The products, especially Traffic Viewer and Diff
Viewer, and the overall developer-centric experience are all very polished.

He appreciates how open the Speedscale team is to receiving product feedback, and is excited to have his team trial some
new features, like local desktop testing and auto-updating of web tokens.
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https://docs.speedscale.com/guides/creating-a-snapshot/#observe-traffic
https://speedscale.com/local-kubernetes-clusters-in-2021/

